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Abstract. The Bethe-Peierls-Weiss approximation is applied to the Coulomb glass Hamiltonian 
in two and three dimensions. The singlepanicle density of states (DOS) at zero t empemre  is 
calculated analytically; it has a soft Coulomb gap at the Fermi energy We rederive the seif- 
consistent equation of Efros, but not the altered version given by Bmnovskii. E h ,  Gelmont 
and Shklovskii. I h e  DOS is independent of the mean mupation number of the sites. These 
results are compared with recent numerical simulations of the model. The influence of finite 
temperatures on the DOS is discussed qualitatively. The Coulomb gap fills with increasing 
temperature T .  For kT smaller than the gap width the DOS at the Fermi energy is proportional 
to w-1. 

1. Introduction 

Disordered systems with interacting localized electronic states are complicated for theoretical 
investigations, and new results have been obtained only slowly since the first work on this 
problem (pollak 1970, Srinivasan 1971). The long-range unscreened Coulomb interaction 
plays an essential role in such systems and the interplay between Coulomb repulsion and 
disorder gives rise to new and interesting properties. For example, the singleparticle density 
of states (DOS) is drastically reduced near the chemical potential p. At zero temperature it 
is expected that the DOS vanishes at the Fermi energy; it is, however, finite at every energy 
different from the Fermi energy. This soft gap is called the Coulomb gap. 

Almost all theoretical investigations of disordered systems with localized states, in which 
the Coulomb interaction plays an important role, have been based on the so-called Coulomb 
glass model, which was first proposed by Ekos and Shklovskii (1975) (for reviews, see also 
Efros and Shklovskii (1985), Pollak and Ortuno (1985) and Pollak (1992)). It consists of 
localized electrons at the sites of a regular lattice which interact via an unscreened Coulomb 
potential. Hopping between the sites is neglected. The disorder is described by a fluctuating 
potential at the lattice sites. The Coulomb glass is equivalent to an king model with long- 
range antiferromagnetic interactions in afluctuating magnetic field (Davies et a1 1982, 1984). 
Although all eigenstates of the system are known in principle, the search for the ground 
state and the calculation of thermodynamic properties are complicated many-body problems. 
Efros (1976) used the stability condition of the ground state against singleparticle hops to 
derive a self-consistent equation (SCE) for the DOS at zero temperature (shictly speaking, an 
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equation for an upper bound of the DOS). Close to the Fermi energy E F  this equation can be 
solved analytically. The resulting DOS g ( 6 )  is asymptotically given by 

g ( E )  = (D/Zir)(lE - ~FI~-'/U:) (t + 0) (1) 

for the D-dimensional system ( D  = 2,3).  Here U0 denotes the characteristic interaction 
energy between the electrons. Later, Baranovskii et al (1979) altered the result by a factor 
of 2, yielding 

g ( E )  = ( ~ / r r ) ( l c  -EFI~-' /u:)  ( E  + 0). (2) 

Raikh and Efros (1987) applied the SCE method to the one-dimensional Coulomb glass 
and obtained a logarithmic energy dependence of the DOS. Recently, Mogilyanskii and 
Raikh (1989) and Hunt (1990) derived SCE-type equations for the Coulomb glass at finite 
temperatures. Their results show that the Coulomb gap fills with increasing temperature. 
Vojta and John (1993) applied the Bethe-Peierls-Weiss (BPW) approximation to the one- 
dimensional Coulomb glass and calculated an upper and a lower bound for the DOS at zero 
temperature. Besides these analytic approaches there are several numerical simulations of 
the Coulomb glass. They are either based on the Monte Carlo type of algorithm (Baranovskii 
ef a1 1979, Davies et al 1982, 1984, Efros and Shklovskii 1987, Mobius and Richter 
1987a, b, Tenelsen and Schreiber 1992, Mobius et a1 1992, Schreiber and Tenelsen 1993) 
or based on the solution of local mean-field equations (Griinewald etnl 1982, 1983). While 
the simulation results confirm the idea of a Coulomb gap in the DOS, the exact behaviour 
of the DOS in the Coulomb gap regime remains a puzzle. 

In this paper we generalize the BPW approach of the previous paper (Vojta and John 
1993) with regard to three aspects. First we consider higher spatial dimensions, second 
we extend the calculations to mean occupation numbers different from (i.e. we consider 
non-half-filled bands), and third we discuss the influence of finite temperatures on the DOS. 
The paper is organized as follows. In section 2 we introduce the Coulomb glass model 
and generalize the main ideas of the BPW approach to the Coulomb glass to filling factors 
different from i. The results for the single-particle DOS at zero temperature are given in 
section 3. In section 4 the finite-temperature results are presented. 

2. The Coulomb glass model 

We consider a simple square or cubic lattice with a lattice constant a and N = L D  lattice 
sites ( D  = 2,3).  The sites are occupied by N K  (0 < K < 1) electrons with the charge -e, 
To preserve charge neutrality each site has a compensating charge K e .  The Hamiltonian of 
the Coulomb glass in the grand canonical ensemble is given by 

where the variable ni (which may have the values 0 or 1)  describes the occupation of the 
site i and rii denotes the distance between sites i and j .  The parameter K and the chemical 
potential p cannot be chosen independently. In the following we shall use K as the free 
parameter which fixes the mean occupation number; p has to be calculated from K. In the 
case K = 4 the model is particlehole symmetric so that p = 0. The random potentials vi 
are independent of each other; they fluctuate according to a probability distribution "(vi).  
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The properties of the Coulomb gap do not depend on the exact form of this distribution, 
provided that it is slowly varying near the chemical potential p. Without loss of generality 
we can therefore use the probability distribution 

The width WO of this box distribution is assumed to be large compared with the interaction 
energy U0 = e2/a between nearest neighbours. The single-particle excitation energy 
ei (which corresponds to adding or removing an electron from the system, leaving the 
occupation of the other sites unchanged) is defined by 

E i  = $7 - p + E(., - K)Uij. ( 5 )  
i 

Because of the interaction terms in equation (5)  the excitation energy depends very 
sensitively on the occupation of all sites of the system. The DOS for the single-particle 
excitations given by 

is the quantity under consideration in this paper. (.) denotes the thermodynamic average 
for a given configuration of the random potentials. g(e) is symmetric with respect to the 
Fermi energy EF = 0 for K = k .  

We now generalize the BPW approach to the Coulomb glass system given by Vojta and 
John (1993) to filling factors different from 4. The BPW approximation (Bethe 1935, Peierls 
1936) is an improvement of the simple mean-field approximation. The main idea is to treat 
the interactions between one 'central' site and all other sites (boundary sites) exactly, but 
to include the interactions between these boundary sites by means of effective fields. An 
additional self-consistency procedure for the effective fields has to ensure that all sites are 
physically equivalent. The BPW Hamiltonian of the Coulomb glass is given by 

with the effective fields 

Here (.)i denotes the conditional thermodynamic average for a fixed occupation of site i .  
The corresponding partition function Z may be calculated by means of the stochastic map 
method (Rujan 1978, Bruinsma and Aeppli 1983). Within this method the summations over 
the boundary sites are carried out and the arising terms can be rewritten as exponentials: 
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The functions A(E, U )  and B(5 ,  U )  are given by 

BA(<,  U) = In(exp[BK(< - KU)I +exp[B(K - 1)(t - KU)ll  

BW5’, U )  = (K - 1) InIexp[BK(.$ - KU)1+ exp[B(K - 1 ) 6  - K W J  

- InUexp(BK[t - (K - 1)Ull +exp{B(K - U[.$ - (K - 1)UllI 

- K InUexp{BK[t - (K - l )Ull+ exp@(K - I)[.$ - (K - l)U]]J. (10) 

The function A(.$, U )  describes the contribution of the boundary sites to the thermodynamic 
local field ho of the central site. The local field ho is defined by (no) = 1/[1 + exp(j?ho)]. 
Comparing this with the partition function 2 from (9) one obtains 

The values of A ( < ,  U )  are of the order of U0 and the Coulomb correlations limit the 
contribution of all A(.$, U )  to a value of the order of the Madelung energy of the lattice. 
In the case U0 << WO the thermodynamic local field is essentially determined by the 
random potential n. We now consider different realizations of the random potential for 
all lattice sites and study the distribution gh of the thermodynamic field ho. Since rpo and 
A(&,  Uoi) are statistically independent. the distribution &,(ha) is simply a slightly modified 
box distribution. To calculate the single-particle energy €0 we also need the conditional 
averages of the occupation numbers of the boundary sites for a fixed value of no which are 
given by 

(nib = 1/U + exp[B[Ei + (no - K)UoillJ. (12) 

To complete the BPW approach we have to define a self-consistency condition for the 
effective fields which ensures that all sites of the model are physically equivalent. Since 
we deal with a random system the self-consistency condition has to be formulated 
for the distribution of the effective fields instead for the effective fields themselves. 
Within the BPW approach a unique way to define the self-consistency condition does not 
exist. However, there are two reasonable choices. On the one hand, one can identify 
.$I + A(p0 + cj A ( t j ,  Uoj), C/O;) with the thermodynamic field of the site i. In this case 
the distribution P ( 6 )  of the effective fields should be similar to gb. On the other hand, 
one can identify + ( n o  - K)&i with the single-particle energy of site i. In this case the 
distribution P ( 6 )  of the effective fields is given by 

P(ti) = g ( t  + (no - K)UOi). (13) 

The consequences of the particular choice of a self-consistency condition for the results are 
discussed in the following section. 

3. Single-particle density of states 

In this section we discuss the zero-temperature DOS. To do this we first express the single- 
particle energy €0 in terms of the thermodynamic field ho: 
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We now study the behaviour of the function A@, U O ~ )  and the occupation number ni for 
zero temperature and obtain (see also figure 1) 

f > K U  
A G ' , U ) =  -5 K U  > 5 > (K - l)U [I:- 1)" (K - l)U > 5 

Inserting these results into equation (15) we get the zero-temperature behaviour (see also 
figure 2) 

K U  > > (K - l ) U  I C(5,  U ,  1) = 5 - KU 
ce, U,O)  =( -(K - 1)U 

(1-K)b 
I '. .. 
I '. 
I '., 

I 

(K- 1)U I 
I 

_ _ _ _ _ _  
-KU 

! 
! 

'... IKU 
',., ! 

'..! 

* 
r, 

- - 
F b r e  1. Stochastic map A ( e , U )  
(. , . ... )and occupation ni ofa boundary 
site at zero temperamre for no = I (- - - -) 
and no = 0 (- . -). 

In the case of a small interaction energy U0 << WO, correlations between ho and as 
well as correlations between different are negligible within the calculation of the DOS (6) 
(for a detailed discussion, see Vojta and John (1993)). For energies E << U0 (within the 
Coulomb gap) the DOS may be written in the form of a convolution integral: 

where the upper sign in the S function corresponds to no = 0 and E > 0, whereas the 
lower sign corresponds to no = 1 and E < 0. In the one-dimensional case both of the 
self-consistency conditions discussed at the end of section 2 can be used to calculate the 
DOS g(E).  The results constitute in some sense an upper and a lower bound for the DOS. 



4994 Th Vojta et a1 

Figure 2. C($,  U, no) at zero temper- 
ature for nn = I (----) and ne = 0 
(- . -). 

For the two- and three-dimensional models the condition P ( % )  - gh(t) yields a gap width 
which diverges with increasing size N of the system. Consequently, the lower bound of 
the DOS (which was provided by P(F) - g,t,(<) in the one-dimensional case) cannot be 
calculated for the two- and three-dimensional models. In the following we shall use the 
self-consistency condition (13) which relates the distribution of the effective fields to the 
DOS. 

We first discuss the DOS for no = 0 which implies that ha > 0 and (since the values of 
C(g, U, 0) are positive) EO > 0. Owing to the 6 function in (18) there is no contribution to 
g ( ~ ) ,  if C1 C&, C/O!, 0) is larger than E .  Taking into account the cases in which already a 
single C((, U, 0) exceeds E, one obtains an upper bound for the DOS. Using equation (13) 
to calculate the probability that CQ, U, 0) exceeds E we  obtain 

where 0 denotes the Heavyside function. This formula does not contain the mean occupation 
number K. Consequently, for energies E << U0 the DOS is independent of K and therefore 
symmetric with respect to the Fermi energy. We now transform the sum over the lattice sites 
into an integral over the interaction energy U (see appendix 1) and interchange the order 
of the U and E integrations. The asymptotic behaviour of g(E) for E << U0 is determined 
by the integral equation 

with a2 = 2n and a3 = 4rr. This is exactly the original version of the SCE of Efros 
(1976), except for the upper bound of the E' integration. This bound does not influence the 
asymptotic behaviour of the DOS for E + 0, which can be obtained from the solution of 
equation (20) as 

g ( E )  = (D/Zlr)(lslD-'/u,D) + O ( P )  (D = 2,3). (21) 

So far we  have calculated the asymptotic behaviour of an upper limit of the DOS. We now 
show that the upper bound (21) yields the exact asymptotic behaviour of the DOS within 
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the BPW approach with the self-consistency condition (13). To do this, we use (13) and 
(21) to calculate the distribution P($) on the right-hand side of the convolution integral 
(18). Details of the calculation are presented in appendix 2. The resulting DOS g ( E )  on the 
left-hand side has the correct asymptotic behaviour. 

Efros (1976) obtained the SCE using the stability condition of the ground state against 
one-particle hops. Within that approach, one considers an electron hopping from an occupied 
site i (c i  c 0) to an unoccupied site j ( ~ j  > 0) .  If the system is in the ground state, the 
change A; j  of the system energy has to be positive for all possible hops, i.e. 

(22) 

This condition prohibits that two sites i and j with a distance r can have energies within an 
interval Uo/r around the Fermi energy. Summing up the corresponding probabilities leads 
directly to the SCE (20). Later Baranovskii etal (1979) claimed a correction of the exponent 
in (20) by a factor of $ because of a supposed error in the original derivation. They argued 
that the inequality (22) was taken into account twice for every pair i, j in the original 
derivation. The altered SCE yields a DOS which is twice the original result. However, 
the reasons for the modification of Baranovskii et al (1979) are not quite compelling and 
possibly it has to be questioned again whether the original or the altered version of the 
SCE is valid. To compare OUT calculated DOS with that of the altered SCE and with recent 
numerical simulation data of Mobius et al (1992) we have plotted the DOS for two and three 
dimensions in figures 3 and 4. Although the simulation was performed for parameters WO 
for which our BPW approximation cannot be expected to be very good, our DOS and the 
simulation data are in satisfactory agreement. The simulation, however, yields a stronger 
decrease in the DOS near the Fermi energy. This could be a result of the correlations between 
the boundary sites which are neglected within the BPW approach. Consequently it cannot be 
decided from the simulation data which of the self-consistent equations is correct, because 
neither equation reproduces the asymptotics of the numerical data. 

A . .  - - tj - t i  - Uo/rij z 0.  

100 

z2 

0, 

w 
v 
- 

10-2 

- 
* *+ ; 0 00. 

* 5 x x x  
* I  _I $,' r \ 

I 

, Figure 3. Single-particle DOS for 
- I' l he  ZD system from the BPW approxi- 

mation (21) (-), from the altered 
SCE (. ---), and from simulation for 
U\, = 0.5. K = 0.5 (0) and for 
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Figure 4. Single-particle DOS for 
the 3~ syslem from the BPW approxi- 
d o n  (21) (-1, from the altered 
SCE (. . - -), and from simulation for 
WO = 0.5, K = 0.5 (0) and for 
WO = 0.5, K = 0.3, 6 > 0 (t) and 
E c 0 (*). 

4. Finite-temperature results 

In this section we study the effects of finite temperatures on the DOS. Within the BPW 
approach we have to distinguish two kinds of excitation. On the one hand, the occupation 
of the central site may change owing to thermal fluctuations. In this case the occupation 
of some of the boundary sites, in particular those with small ti, will relax to minimize 
the energy, taking the new occupation of the central site into account. On the other hand, 
the occupations of the boundary sites may change owing to thermal fluctuations. In the 
following we shall qualitatively discuss the influence of these excitations on the DOS. The 
treatment is restricted to low temperatures kT << U,. 

To include the influence of thermal fluctuations of the occupation number of the central 
site, we have to start with a generalized form of the convolution integral (18) for the 
temperature-dependent DOS: 

After partial integration it may be transformed into a convolution of the zero-temperature 
DOS and the derivative of the Fermi-distribution function: 

T) = - dh f ' ( ~  - h)g(h) (24) 

f'(x) = (d /&)( l /U+ exp(Bx)l). (25) 

1 
where 

For low temperatures, - f ' ( x )  has a sharp peak with a width of the order of kT  at x = 0. 
This means that gl ( E ,  T) is approximately given by an average of the zero-temperature DOS 
over an interval of the width of kT around e .  
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We shall now discuss how thermal fluctuations of the occupation numbers of the 
boundary sites influence the DOS. The probability that the occupation number of the boundary 
site i changes is given by the Fermi function. The total number of sites with a changed 
occupation number may be estimated from 

The contribution of these sites to the single-particle energy of the central site is, of course, 
a random quantity. To estimate the width of its distribution, one has to take into account 
the correlations between the boundary sites; otherwise one obtains a diverging width in 
the thermodynamic limit N + CO. The correlations limit the contribution of the boundary 
sites with changed occupation number to the single-particle energy of the central site. The 
resulting value is of the order of the Madelung energy of these sites which is of the order 
of kT for all dimensions. Because changes in the occupation numbers of the boundary 
sites are independent of €0, the DOS is a convolution of the DOS from equation (24) and a 
dishibution of width kT.  In summary we can write 

where w ,  which comprises the effects of both kinds of excitation, depends only on the ratio 
c / k T .  For small temperatures, the function w[E/kT)  has a sharp peak with a width of the 
order of kT at E = 0. Therefore the temperature-dependent DOS g(E, T )  is approximately 
given by an average of the zero-temperature DOS over an interval with a width of kT around 
E. Consequently, the DOS remains nearly unchanged for energies E >> kT.  The DOS at the 
chemical potential, however, increases with increasing temperature according to 

which is easily obtained if one inserts the asymptotic behaviour (21) into equation (27). 

5. Conclusion 

In this paper we have calculated the asymptotic behaviour of the single-particle DOS for the 
Coulomb glass model in two and three dimensions for energies close to the Fermi energy. 
For zero temperature we have rederived the original version of the SCE of Efros (1976) 
on the basis of the BPW approximation of the Coulomb glass Hamiltonian. Close to the 
Fermi energy the SCE may be solved analytically. Since this equation does not contain the 
mean occupation number K ,  the resulting DOS is independent of K and symmetric with 
respect to the Fermi energy. We obtain g(E) = DIG - G F I ~ - ~ / ~ X U ~  for the D-dimensional 
system (D = 2,3).  Our result differs by a factor of 2 from the altered version of the 
SCE of Baranovskii et al (1979). The modification was based on the argument that the 
original derivation seemed to consider every stability condition twice and therefore seemed 
to underestimate the DOS. The origin of this alteration is not quite obvious and we think it  
should be questioned again in view of the results of the present paper. 

We have compared OUT calculated DOS with recent numerical simulation data of Mobius 
er d (1992). The BPW results are in satisfactory agreement with the simulation data; the 
simulation, however, yields a stronger decrease in the DOS near the Fermi energy. The 
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difference between the DOS from the BPW approximation and the simulation data possibly 
stems from the mean-field character of the BPW scheme which neglects correlations between 
the boundary sites. 

We have qualitatively discussed the influence of finite temperatures on the DOS. For 
kT << U,, the temperature-dependent DOS g(6, T )  may be written as a convolution of the 
zero-temperature DOS g(6) and a function w ( c / k T ) / k T  which describes the influence of 
the excitations from the ground state. The DOS remains nearly unchanged for E >> k T .  
For energies lower than kT, however, the Coulomb gap is filled. The DOS at the chemical 
potential behaves as g(p,  7') - (kT)D- '  where D is the dimensionality of the system. 
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Appendix 1. Transformation of the lattice sum into an  integral over U 

In order to transform the sum over the lattice sites i in equation (19) into an integral over 
the interaction energy U we consider the number dN of lattice sites with distances between 
r and r + dr from the origin: 

dN = aDrD-' dr (Al.1) 

where az = 2n and a) = 4n. This is used to transform the sum into an integral over r. 
Since the interaction energy depends only on r ,  we may transform the r integral into an 
integral over U .  Consequently we obtain 

For the Coulomb interaction we have U = Uo/r  and the final result is given by 

(A 1.2) 

(A 1.3) 

To be precise, we note that the lower bound of the integration depends on N in a finite 
system; it tends to zero with N going to infinity. The transformation from the sum over the 
lattice sites to the integral over U is correct for small U (i.e. for sites far away from the 
origin). Obviously the transformation is not exact for large U (i.e. if sites close to the origin 
have to be taken into account). However, the properties of the Coulomb gap are determined 
by the long-range tail of the Coulomb interaction and the error close to the origin does not 
affect the gap. 
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Appendix 2. Asymptotic behaviour of the DOS 

In order to show that equation (21) yields the correct asymptotic behaviour of the DOS 
within the BPW approach to the Coulomb glass, we apply the Laplace transformation to the 
integral equation (18). It is known from the theory of Laplace transformations that 

where f(s) is the Laplace transform of g'(c): 

1 m 
f(s) = 1 d c g ' k )  expf-sc) = gdo) n ( [ed p( t )  exp[-sC(&, U O ~ ,  0)l . (A2.2) 

i 

Because of the limit s + 00 in equation (A2.1), g(c) is determined only by the asymptotic 
behaviour of f(s). Using the self-consistency condition (13) and the transformation from 
the sum over the lattice sites to the integral over the interaction energy U, the Laplace 
transform f ( s )  may be written as 

If one now inserts the asymptotic behaviour (21) into this expression, the integrals may be 
directly calculated. The leading term in the asymptotic behaviour of g(c') determines the 
general behaviour of f ( s )  for s + 00: 

f(s) = ( ~ / ( s u ) ~ - ' )  x constant. (A2.4) 

Using equation (A2.1) to transform back, we obtain 

g(c) = ( I C I ~ - ' / U : )  x constant (A2.5) 

where the proportionality factor is determined by the second term in the asymptotic 
behaviour (21) of g(c'). This correction term has to be chosen in such a way that it 
provides the correct pre-factor because this pre-factor in turn determines the power of 161 in 
the leading term. This interdependence corresponds to the strange 'stabilizing mechanism' 
that renders the DOS calculated from Efros' SCE independent of the disorder strength WO. 
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